Nutrient content

Microorganisms require certain basic nutrients for growth and maintenance of metabolic functions. The amount and type of nutrients required range widely depending on the microorganism. These nutrients include water, a source of energy, nitrogen, vitamins, and minerals (Mossel and others 1995, p 47-8, 185-7; Ray 1996, p 62-65; Jay 2000, p 47-8).

 

Varying amounts of these nutrients are present in foods. Meats have abundant protein, lipids, minerals, and vitamins. Most muscle foods have low levels of carbohydrates. Plant foods have high concentrations of different types of carbohydrates and varying levels of proteins, minerals, and vitamins. Foods such as milk and milk products and eggs are rich in nutrients. The role of water is discussed in section 2.1.

 

Foodborne microorganisms can derive energy from carbohydrates, alcohols, and amino acids. Most microorganisms will metabolize simple sugars such as glucose. Others can metabolize more complex carbohydrates, such as starch or cellulose found in plant foods, or glycogen found in muscle foods. Some microorganisms can use fats as an energy source.

 

Amino acids serve as a source of nitrogen and energy and are utilized by most microorganisms. Some microorganisms are able to metabolize peptides and more complex proteins. Other sources of nitrogen include, for example, urea, ammonia, creatinine, and methylamines.

 

Examples of minerals required for microbial growth include phosphorus, iron, magnesium, sulfur, manganese, calcium, and potassium. In general, small amounts of these minerals are required; thus a wide range of foods can serve as good sources of minerals.

 

In general, the Gram (+) bacteria are more fastidious in their nutritional requirements and thus are not able to synthesize certain nutrients required for growth (Jay 2000, p 78). For example, the Gram (+) foodborne pathogen S. aureus requires amino acids, thiamine, and nicotinic acid for growth (Jay 2000, p 444). Fruits and vegetables that are deficient in B vitamins do not effectively support the growth of these microorganisms. The Gram (-) bacteria are generally able to derive their basic nutritional requirements from the existing carbohydrates, proteins, lipids, minerals, and vitamins that are found in a wide range of food (Jay 2000, p 47-8).

 

An example of a pathogen with specific nutrient requirements is Salmonella Enteritidis. Growth of Salmonella Enteritidis may be limited by the availability of iron. For example, the albumen portion of the egg, as opposed to the yolk, includes antimicrobial agents and limited free iron that prevent the growth of Salmonella Enteritidis to high levels. Clay and Board (1991) demonstrated that the addition of iron to an inoculum of Salmonella Enteritidis in egg albumen resulted in growth of the pathogen to higher levels compared to levels reached when a control inoculum (without iron) was used.

 

The microorganisms that usually predominate in foods are those that can most easily utilize the nutrients present. Generally, the simple carbohydrates and amino acids are utilized first, followed by the more complex forms of these nutrients. The complexity of foods in general is such that several microorganisms can be growing in a food at the same time. The rate of growth is limited by the availability of essential nutrients. The abundance of nutrients in most foods is sufficient to support the growth of a wide range of foodborne pathogens. Thus, it is very difficult and impractical to predict the pathogen growth or toxin production based on the nutrient composition of the food.

Leave a Reply